
HELSINGIN YLIOPISTO
HELSINGFORS UNIVERSITET
UNIVERSITY OF HELSINKI

State-of-the-Art Natural Language Inference
Systems Fail to Capture the Semantics of
Inference

Aarne Talman
October 25, 2018

Department of Digital Humanities
University of Helsinki

1 / 30



Outline

1 Introduction

2 We Have Solved the Problem of NLI with Neural Networks!

3 No We Haven’t!

4 Now What?

2 / 30



Outline

1 Introduction

2 We Have Solved the Problem of NLI with Neural Networks!

3 No We Haven’t!

4 Now What?

3 / 30



Natural Language Inference

Natural language inference (NLI) tries to model the inferential relationship between two
or more given sentences.
Given two sentences, the premise p and the hypothesis h, the task is to determine
whether:

1. h is entailed by p
2. the sentences are in contradiction with each other
3. there is no inferential relationship between the sentences (neutral).

Example:

Premise: A couple walk hand in hand down a street.
Hypothesis: A couple is walking together.
Label: entailment
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NLI Datasets and Benchmark Tasks

SNLI: Stanford Natural
Language Inference (Bowman

et al., 2015)

The first large-scale
human-written manually
labeled dataset for NLI.

Contains 550,152 training
pairs, 10,000 development
pairs 10,000 test pairs.

Source: image captions
taken from the Flickr30k
corpus

MultiNLI: Multi-Genre Natural
Language Inference (Williams

et al., 2018)

The same data collection
method and definition of
inference as SNLI.

Contains 392,702 training
pairs, 20,000 development
pairs 20,000 test pairs.

Sentence pairs drawn from
ten distinct genres of written
and spoken English.

SICK: Sentences Involving
Compositional Knowledge

(Marelli et al., 2014)

Premises drawn from 8K
ImageFlickr and STS
MSRVideo Description
datasets.

Hypotheses automatically
generated.

Contains 9,840 labeled
sentence pairs.

Contains examples
pertaining to logical
inference (negation,
conjunction, disjunction,
relative clauses, etc.)

Other notable datasets include:
FraCas (Cooper et al., 1996), RTE (Dagan et al., 2006), SciTail (Khot et al., 2018), XNLI (Conneau et al., 2018)

5 / 30



NLI Datasets and Benchmark Tasks

Example sentence pairs (entailment)

SICK
A person, who is riding a bike, is wearing gear which is black
A biker is wearing gear which is black

SNLI
A young family enjoys feeling ocean waves lap at their feet.
A family is at the beach.

MultiNLI
Kal tangled both of Adrin’s arms, keeping the blades far away.
Adrin’s arms were tangled, keeping his blades away from Kal.

Table 1: Example sentence pairs from the three datasets.
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Neural Network Architectures for NLI

Sentence encoding models

Figure 1: Sentence encoding architecture for NLI based on Bowman
et al. (2015)

Cross-sentence attention models

Figure 2: Simplified cross-sentence attention model for NLI
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An Example Sentence Encoding Model
Hierarchical BiLSTM Max Pooling Architecture (HBMP) (Talman et al., 2018)

Motivated by the good results with one-layer
bidirectional LSTM max pooling encoder
(InferSent) by Conneau et al. (2017).

Main idea: allow all BiLSTM layers to re-read the
input sentences, while preserving information
from the previous layers.

Our hypothesis is that each layer learns additional
semantic information not present on the previous
layer.

Holds the current top score in SciTail NLI
benchmark by AllenAI (Khot et al., 2018).

Figure 3: HBMP architecture for sentence encodings
(Talman et al., 2018)
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An Example Cross-Sentence Attention Model
Densely-Connected Recurrent and Co-Attentive Network (DRCN) (Kim et al., 2018)

Figure 4: Densely-Connected Recurrent and Co-Attentive Network architecture (Kim et al., 2018)
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The Current State-of-the-Art Model for SNLI Achieves 90% Accuracy!

Sentence Encoding Models

Model Accuracy
BiLSTM Max Pool (InferSent) (Conneau et al., 2017) 84.5
Distance-based Self-Attention (Im and Cho, 2017) 86.3
ReSA Shen et al. (2018) 86.3
600D BiLSTM with gen pooling (Chen et al., 2018) 86.6
600D Dynamic Self-Attention Model (Yoon et al., 2018) 86.8
2400D Multiple-Dynamic Self-Attention Model 87.4
(Yoon et al., 2018)
Our HBMP (Talman et al., 2018) 86.6

Table 2: Sentence Encoding Model test accuracies (%).

Cross-Sentence Attention Models

Model Accuracy
KIM Ensemble (Chen et al., 2017) 89.1
450D DR-BiLSTM Ensemble (Ghaeini et al., 2018) 89.3
300D CAFE Ensemble (Tay et al., 2017) 89.3
150D Multiway Attn Network Ensemble (Tan et al., 2018) 89.4
300D DMAN Ensemble (Pan et al., 2018) 89.6
Fine-Tuned LM-Pretrained Transformer (Radford et al., 2018) 89.9
DRCN Ensemble (Kim et al., 2018) 90.1

Table 3: Cross-Sentence Attention Model test accuracies (%).

Bottom line: Neural network models for NLI have become hugely successful!!

But have we solved the problem of NLI?
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Neural Network Models Fail to Capture Lexical Semantics

Breaking NLI (Glockner et al., 2018): a test set of 8,193 sentence pairs constructed to
highlight how poorly current neural network models for NLI can handle lexical meaning.

Constructed by taking premises from the SNLI training set, creating several hypotheses
from them by changing at most one word.

Lexical items changed in the dataset include e.g. colors, instruments, ordinals, drinks,
cardinals, rooms, vegetables, etc.

Premise: Several women stand on a platform near the yellow line.
Hypothesis: Several women stand on a platform near the green line.
Label: contradiction

Table 4: Example sentence pair from the Breaking NLI dataset.
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Neural Network Models Fail to Capture Lexical Semantics

Baseline Cross-Sentence Attention Sentence Encoding
Category WordNet * Decomposable Attention* ESIM* KIM* InferSent** 600D HBMP**

antonyms 95.5 41.6 70.4 86.5 51.6 54.7
antonyms(wordnet) 94.5 55.1 74.6 78.8 63.7 69.1
cardinals 98.6 53.5 75.5 93.4 49.4 58.8
colors 98.7 85.0 96.1 98.3 90.6 90.4
countries 100.0 15.2 25.4 70.8 77.2 81.2
drinks 94.8 52.9 63.7 96.6 85.1 81.3
instruments 67.7 96.9 90.8 96.9 98.5 96.9
materials 75.3 65.2 89.7 98.7 81.6 82.6
nationalities 78.5 37.5 35.9 73.5 47.3 49.8
ordinals 40.7 2.1 21.0 56.6 7.4 4.5
planets 100.0 31.7 3.3 5.0 75.0 45.0
rooms 89.9 59.2 69.4 77.6 76.3 72.1
synonyms 70.5 97.5 99.7 92.1 99.6 84.5
vegetables 86.2 43.1 31.2 79.8 39.5 40.4
Total 85.8 51.9 65.6 83.5 65.6 65.1

Table 5: Breaking NLI scores (accuracy %). Results marked with * as reported by Glockner et al. (2018) and ** by Talman et al. (2018).
Scores highlighted with bold are top scores when comparing the InferSent and our HBMP model.
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Neural Network Models Learn Annotation Artifacts

Gururangan et al. (2018) show that datasets like SNLI and MultiNLI contain
unintentional annotation artifacts which help NLI models in classification.

A simple text categorization model (BoW + bigram) can correctly predict the gold label
using the hypotheses alone in about 67% of SNLI and 53% of MultiNLI (majority class
being 34% and 35% respectively).
Examples:

Entailments often contain generalizations (e.g. dog → animal).
Neutrals contain modifiers (e.g. tall, sad) and superlatives (e.g. first, most).
Contradictions often contain negations. The word cat also appears frequently in
contradictions.

Conclusion: annotation artifacts inflate model performance in NLI tasks.
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Neural Network Models for NLI Fail in Transfer Learning Between NLI
Tasks

Our recent experiments show that the success of neural network models for NLI is
largely task specific (Talman and Chatzikyriakidis, 2018).
We trained four state-of-the-art NLI models on SNLI, MultiNLI and SNLI+MultiNLI
training data, and tested them on test data drawn from a different corpus.

Train Dev Test
SNLI SNLI SNLI
SNLI SNLI MultiNLI
SNLI SNLI SICK
MultiNLI MultiNLI MultiNLI
MultiNLI MultiNLI SNLI
MultiNLI MultiNLI SICK
SNLI+MultiNLI SNLI SNLI
SNLI+MultiNLI SNLI SICK

Table 6: List of all the combinations of data used in the experiments.
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Neural Network Models for NLI Fail in Transfer Learning Between NLI
Tasks

The drop in accuracy is biggest when training with SNLI, possibly due to the simplicity
of sentences in the dataset.
However, remember how similar the SICK and SNLI examples were?

Train Dev Test Test Accuracy ∆ Model
SNLI SNLI SNLI 86.1 600D BiLSTM-max
SNLI SNLI SNLI 86.6 600D HBMP (Talman et al., 2018)
SNLI SNLI SNLI 88.0 600D ESIM (Chen et al., 2017)
SNLI SNLI SNLI 88.6 300D KIM (Chen et al., 2018)
SNLI SNLI MultiNLI-m 55.7* -30.4 600D BiLSTM-max
SNLI SNLI MultiNLI-m 56.3* -30.3 600D HBMP
SNLI SNLI MultiNLI-m 59.2* -28.8 600D ESIM
SNLI SNLI MultiNLI-m 61.7* -26.9 300D KIM
SNLI SNLI SICK 54.5 -31.6 600D BiLSTM-max
SNLI SNLI SICK 53.1 -33.5 600D HBMP
SNLI SNLI SICK 54.3 -33.7 600D ESIM
SNLI SNLI SICK 55.8 -32.8 300D KIM

Table 7: Test accuracies (%). For the baseline results highlighted in bold the training data includes examples from the same corpus as the
test data. For the other models the training and test data are taken from separate corpora.
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Neural Network Models for NLI Fail in Transfer Learning Between NLI
Tasks

The drop in accuracy is smallest when trained on MultiNLI and tested on SNLI.
However, the drop is unexpectedly big given the same definition of inference and the
same data collection method in SNLI and MultiNLI.

Train Dev Test Test Accuracy ∆ Model
MultiNLI MultiNLI-m MultiNLI-m 73.1* 600D BiLSTM-max
MultiNLI MultiNLI-m MultiNLI-m 73.2* 600D HBMP
MultiNLI MultiNLI-m MultiNLI-m 76.8* 600D ESIM
MultiNLI MultiNLI-m MultiNLI-m 77.3* 300D KIM
MultiNLI MultiNLI-m SNLI 63.8 -9.3 600D BiLSTM-max
MultiNLI MultiNLI-m SNLI 65.3 -7.9 600D HBMP
MultiNLI MultiNLI-m SNLI 66.4 -10.4 600D ESIM
MultiNLI MultiNLI-m SNLI 68.5 -8.8 300D KIM
MultiNLI MultiNLI-m SICK 54.1 -19.0 600D BiLSTM-max
MultiNLI MultiNLI-m SICK 54.1 -19.1 600D HBMP
MultiNLI MultiNLI-m SICK 47.9 -28.9 600D ESIM
MultiNLI MultiNLI-m SICK 50.9 -26.4 300D KIM

Table 8: Test accuracies (%). For the baseline results highlighted in bold the training data includes examples from the same corpus as the
test data. For the other models the training and test data are taken from separate corpora.
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Neural Network Models for NLI Fail in Transfer Learning Between NLI
Tasks

Combining SNLI and MultiNLI training data doesn’t help when testing with SICK.

Train Dev Test Test Accuracy ∆ Model
SNLI+MultiNLI SNLI SNLI 86.1 600D BiLSTM-max
SNLI+MultiNLI SNLI SNLI 86.1 600D HBMP
SNLI+MultiNLI SNLI SNLI 87.5 600D ESIM
SNLI+MultiNLI SNLI SNLI 86.2 300D KIM
SNLI+MultiNLI SNLI SICK 54.5 -31.6 600D BiLSTM-max
SNLI+MultiNLI SNLI SICK 55.0 -31.1 600D HBMP
SNLI+MultiNLI SNLI SICK 54.5 -33.0 600D ESIM
SNLI+MultiNLI SNLI SICK 54.6 -31.6 300D KIM

Table 9: Test accuracies (%). For the baseline results highlighted in bold the training data includes examples from the same corpus as the
test data. For the other models the training and test data are taken from separate corpora.
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Getting 90% accuracy on a benchmark task is not
enough if you’re not able to apply the trained model

outside of that benchmark!
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Conclusions and Future Research

Current state-of-the-art neural network models for NLI are not able to capture the semantics
of NLI:

They can be broken by small changes in lexical meaning.
They learn annotation artifacts in the data.
They fail in transfer learning between NLI tasks.

Tasks for the future:
Better datasets with more diverse notion of inference, see (Chatzikyriakidis et al.,
2017) for dicussion.
Better NLI models that generalize across datasets.

Huge pretrained language models, e.g. AllenAI’s ELMo (Peters et al., 2018), OpenAI’s
Finetuned Transformer (Radford et al., 2018) and Google’s BERT (Devlin et al., 2018)?
What about multilingual NLI and multilingual models?
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Thank You!
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